Video

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media.
Video was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) systems which were later replaced by flat panel displays of several types. Video systems vary in display resolution, aspect ratio, refresh rate, color capabilities and other qualities. Analog and digital variants exist and can be carried on a variety of media, including radio broadcast, magnetic tape, optical discs, computer files, and network streaming.
Frame rate, the number of still pictures per unit of time of video, ranges from six or eight frames per second (frame/s) for old mechanical cameras to 120 or more frames per second for new professional cameras. PAL standards (Europe, Asia, Australia, etc.) and SECAM (France, Russia, parts of Africa etc.) specify 25 frame/s, while NTSC standards (USA, Canada, Japan, etc.) specify 29.97 frame/s. Film is shot at the slower frame rate of 24 frames per second, which slightly complicates the process of transferring a cinematic motion picture to video. The minimum frame rate to achieve a comfortable illusion of a moving image is about sixteen frames per second.
The color model the video color representation and maps encoded color values to visible colors reproduced by the system. There are several such representations in common use: YIQ is used in NTSC television, YUV is used in PAL television, YDbDr is used by SECAM television and YCbCr is used for digital video.
The number of distinct colors a pixel can represent depends on color depth expressed in the number of bits per pixel. A common way to reduce the amount of data required in digital video is by chroma subsampling (e.g., 4:4:4, 4:2:2, etc.). Because the human eye is less sensitive to details in color than brightness, the luminance data for all pixels is maintained, while the chrominance data is averaged for a number of pixels in a block and that same value is used for all of them. For example, this results in a 50% reduction in chrominance data using 2 pixel blocks (4:2:2) or 75% using 4 pixel blocks (4:2:0). This process does not reduce the number of possible color values that can be displayed, but it reduces the number of distinct points at which the color changes.